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A large body of scientific evidence documents how environ-
mental exposures can substantially shape human outcomes. 
For instance, poor air quality is estimated to kill millions 

of people per year1, warming temperatures lead to more crime and 
less economic output2, and exposure to lead reduces educational 
achievement3. Effects can vary substantially across subgroups: air 
pollution is more harmful to health in poorer US counties4, warm-
ing temperatures have more negative effects on economic output 
in already hot locations5 and lead exposures appear to have larger 
effects in already disadvantaged households6. Standard models of 
behaviour in both public health and economics suggest that the 
magnitude and variation of these effects in part reflect choices that 
individuals make or are unable to make regarding their exposures, 
and that the choice sets available to individuals are in turn reflec-
tive of individuals’ knowledge, circumstances and preferences7,8. 
Unfortunately, these decision-making components, as well as their 
behavioural outcomes, are typically hard to observe at scale. This 
makes it difficult to understand why a given environmental expo-
sure generates the effect it does, why this effect might differ across 
groups, and whether and how policy should respond. A lack of data 
on behaviours and exposures also makes the evaluation of existing 
policy approaches challenging, which is particularly problematic for 
the large number of environmental settings—from wildfires to heat 
waves to hurricanes—in which current policy largely relies on indi-
viduals to protect themselves.

Here we show how combining traditional sensor and survey 
data with information from non-traditional distributed sensors—
including data from private outdoor and indoor pollution sensors, 
cell phones, social media posts and internet search activity—can 
generate population-scale insights into people’s knowledge, pref-
erences and choices regarding a changing environment, and into 
how economic circumstances shape their choice set. We focus 
on understanding responses to wildfire smoke, a rapidly growing  

environmental stressor throughout much of the United States and 
internationally. The annual area burned by wildfires in the United 
States has more than doubled in recent decades, as a result of a 
century of fire suppression and a warming climate that has left the 
resulting abundant fuel much more flammable9. This increase in fire 
activity has led to substantial increases in average smoke exposure 
across the continental United States, potentially reversing decades 
of improvements in air quality10. Absent substantial intervention, 
these trends are expected to continue and perhaps accelerate in a 
warming climate11–13.

A growing literature has begun to document myriad health 
impacts of ambient wildfire smoke exposure14–18. As with impacts 
of other environmental stressors, the magnitude of these health 
impacts may depend on behaviours and individual-specific expo-
sures that are often poorly measured and understood. In particular, 
recent wildfire case studies suggest that individuals vary in their 
knowledge and beliefs about their own exposures and about the 
risks that these exposures pose to their health19,20. Documented het-
erogeneity in the impacts of wildfire smoke exposure and exposure 
to other particulates4,18,21–23 suggests that both socio-economic cir-
cumstances and previous exposures could also constrain behaviour 
in important ways. Understanding which features matter most is 
consequential for policy design: impacts driven by a lack of aware-
ness of one’s exposure, for instance, call for different interventions 
than impacts driven by an inability to protect oneself from a known 
exposure. Such understanding is particularly important for wildfire, 
given that current policy approaches to risk mitigation focus on the 
private provision of protection—that is, asking individuals to stay 
indoors, limit infiltration and purchase protective technologies24.

To better understand exposures, behavioural responses and out-
comes in the face of rapidly changing wildfire risk, we first develop 
measures of daily exposure to ambient particulate matter (PM2.5) 
from wildfire smoke, as this exposure itself is not directly measured  
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by existing pollution sensors. To do so, we combine long time 
series of regulatory ground monitor data on PM2.5 concentrations 
from US Environmental Protection Agency (EPA) pollution moni-
tors with satellite-derived estimates of smoke exposure. To isolate 
wildfire-smoke-derived PM2.5 from other sources of PM2.5, we define 
smoke PM2.5 as location-, month- and period-specific anomalous 
PM2.5 on days in which satellites indicated that smoke was overhead 
(Methods). The resulting ambient smoke PM2.5 exposure data cover 
782 US counties that contain ~74% of the US population (Extended 
Data Fig. 1), and these data display wide spatial and temporal vari-
ability (Fig. 1). Satellite-based counts of the annual number of dense 
smoke plumes overhead have trended upwards in the past decade 
throughout most of the continental United States, particularly in the 
West (Fig. 1a), which we estimate have helped drive rapid increases 
in estimated annual smoke PM2.5 across the country and in days 
with extreme PM2.5 due to smoke (Fig. 1b,c).

We merge these daily wildfire-smoke-derived data with multiple 
high-frequency datasets that are measured at the population scale 
and shed light on individuals’ knowledge, beliefs and behaviours 
during wildfires. To study individuals’ awareness of their expo-
sure, we first analyse location-specific variation in search query 
behaviour related to smoke exposure. We use public data on spe-
cific search queries (for example, ‘air quality’) from Google Trends, 
which provides normalized data on search term popularity at the 
weekly level across ‘designated market areas’ (DMAs) (roughly, 
metro areas; Methods). We interpret a purposeful search for infor-
mation related to smoke exposure as evidence that an individual is 
aware he or she is being exposed and that his or her exposure level 
is worth learning about—what we call ‘salience’.

Second, we study individuals’ preferences and sentiments 
regarding wildfire smoke exposure. Such preferences underlie 
standard theoretical models of choice behaviour but are hard to 
observe directly and at scale. Past work has shown that social media 
behaviour can be a sensitive and accurate tool for understanding 
individuals’ preferences and sentiments towards what is happening 

around them25, including a changing environment26,27. Following 
this earlier work, we analyse ~1.7 billion georeferenced Twitter 
updates (‘tweets’) posted since 2016 using natural language process-
ing algorithms that extract information on the sentiment revealed 
in each tweet28 (Methods). This approach has been validated at the 
population scale against self-reported measures of emotional state25 
and complements earlier work that used Twitter to directly measure 
wildfire activity29 and infer smoke concentrations30.

Third, we again use Google search queries to study whether 
individuals sought information regarding specific health-protective 
actions, analysing item-specific search terms such as ‘air filter’, 
‘air purifier’ and ‘smoke mask’. While we cannot observe whether 
individuals eventually purchased these items except in the case of 
PurpleAir monitors (as described below), such search behaviour 
can be interpreted, at a minimum, as evidence of an individual’s 
belief that health-protective options exist. Evidence from other set-
tings suggests that search activity is predictive of future behaviour, 
including consumer purchases31,32.

Fourth, we use smartphone-derived location data to study 
whether individuals altered their physical movements during peri-
ods of smoke exposure. Short-term migration in response to other 
environmental stress (such as hurricanes) is common and is a plau-
sible avenue by which individuals or households could seek to limit 
exposure to wildfire smoke. We study both the share of people esti-
mated to be completely at home and the share estimated to be com-
pletely away from their homes, on days or weeks of smoke exposure.

We combine each measure with our smoke PM2.5 data and analyse 
the effect of smoke on each outcome using panel fixed effects esti-
mators that exploit local temporal variation in both exposures and 
outcomes. While long-term exposure to wildfire smoke shows clear 
spatial patterns and temporal trends (Fig. 1), local-level variation 
in daily exposure is highly random, and panel estimators—which 
are commonly employed in related environmental settings2—plau-
sibly isolate the impact of variation in smoke exposure from other 
time-invariant and time-varying factors that could be correlated 
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Fig. 1 | trends in smoke exposure across the united States. a, Measurements from satellites indicate rapidly growing exposure to ‘heavy’ smoke plumes 
across much of the United States. The estimates are shown on a 10 km grid63 and indicate the estimated annual increase between 2011 and 2020 in the 
number of days with smoke plumes that National Oceanic and Atmospheric Administration (NOAA) analysts designate as ‘heavy’, their densest plume 
classification. The dots indicate EPA ground-based pollution monitors. b, Distribution of estimated annual average smoke PM2.5 across EPA ground 
monitors reporting in each year. c, Distribution of estimated daily smoke PM2.5 across the same monitors. Recent increases in extreme annual exposure are 
being driven by increases in extreme daily exposure. Source for map in a: US Census Bureau.
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with both smoke exposure and outcomes, including potential con-
founding from COVID-19 (Methods). To ensure that we are mea-
suring the impact of wildfire smoke and not simply proximity to 
wildfire itself, we develop measures of distance to the nearest active 
wildfire and analyse whether responses differ by fire proximity. 
The unit of observation in these analyses is either the county-day 
(for sentiment and mobility analyses) or the metro area-week (for 
salience and health protection measures).

Finally, we analyse how ambient outdoor smoke PM2.5 infiltrates 
into the indoor home environment and whether behaviours and cir-
cumstances shape this infiltration. Understanding indoor concen-
trations is critical, as individuals in the United States spend the vast 
majority of their time indoors. Using data from the American Time 
Use Survey, we calculate that Americans on average spend >70% 
of their time indoors at home, with higher shares for lower-income 
and elderly individuals and overall shares trending up over time 
(Extended Data Fig. 2). Personal integrated exposure to variation 
in ambient exposure is then probably substantially mediated by 
characteristics of home and work environments that are hard to 
observe33–35, and these differences could in turn affect outcomes36–39. 
If socio-economic or demographic variables shape indoor environ-
ments in ways that affect exposures, as has been hypothesized37, 
then exposure levels or policy choices that appear equitable on the 
basis of traditional outdoor measures could obscure large dispari-
ties in realized exposures.

We assemble and harmonize hourly data from 1,520 indoor 
PurpleAir air pollution monitors that individuals have put in their 
single-family homes across the United States and use nearby out-
door PurpleAir monitors to construct outdoor PM2.5 concentra-
tions at each home (Methods). To estimate infiltration, we use 
distributed lag or lagged-dependent variable panel regression to 
estimate the marginal increase in indoor PM2.5 when outdoor PM2.5 
increases by one unit (that is, ∂IndoorPM2.5/∂OutdoorPM2.5), con-
trolling flexibly for time of day, day of week and month of sample 
(Methods). We estimate models that pool all indoor monitors as 
well as monitor-specific models, and we study how infiltration dif-
fers as a function of household and neighbourhood characteristics. 
Our approach complements recent work using PurpleAir to study 
infiltration generally40 and during wildfires specifically33, though 
our estimation approach offers advantages relative to the latter such 
as robustness to indoor pollution sources and to diurnal patterns in 
infiltration-relevant behaviours (Methods).

The timeliness and granularity of passive distributed sensor data 
need to be weighed against their potential non-representativeness, 
as the latter can bias population-scale inferences. Our search data 
and mobility data are probably our most representative, as the vast 
majority of Americans use the internet regularly and most own 
and use smartphones. Twitter users are less representative on aver-
age, but Twitter-derived sentiment measures have been shown to 
validate well against population emotional state, and related work 
shows that the response of sentiment to environmental stress mir-
rors that measured in representative survey data. The PurpleAir 
data are the least representative of our datasets, with wealthier and 
more educated households more likely to own monitors; however, 
as discussed below, socio-economic and demographic information 
does not appear strongly predictive of infiltration. See the Methods 
for a more detailed discussion of sample representativeness.

results
Increases in wildfire-derived ambient PM2.5 exposure lead to 
an increase in popularity for air-quality-related search terms, 
with even small increases above zero exposure appearing salient  
(Fig. 2a; P < 0.001; linear model effect size, 0.689; 95% confidence 
interval (CI), 0.503, 0.874). The results are robust to alternate 
air-quality-related search terms and to using analogous search 
terms in Spanish (Supplementary Table 1), are not driven by  

proximity to active wildfires, and are robust to the inclusion of 
weather controls or alternate fixed effects (Supplementary Tables 2 
and 3). Placebo search terms plausibly unrelated to smoke exposure 
do not respond to exposure, and search for smoke-related terms does 
not respond to variation in PM2.5 on non-smoke days (Supplementary 
Table 4). Our results are consistent with interview-based evidence 
finding that individuals who perceived they were being exposed to 
smoke often used internet-based sources to confirm their percep-
tions19, although we cannot easily distinguish whether individuals 
recognized that they were being exposed to smoke PM2.5 specifically 
or just to poor air quality from any source (Supplementary Table 3).  
The salience of ambient exposure at low levels is also somewhat 
reassuring given recent evidence of health impacts for sensitive pop-
ulations even at very low levels of ambient exposure18.

We find that exposure to ambient smoke PM2.5 makes people 
unhappier, as measured in an automated sentiment analysis of 
five years of tweets across the United States. Expressed sentiment 
in tweets declines roughly linearly above smoke PM2.5 exposures 
of ~20 μg m−3 (Fig. 2b; linear effect size of 100 μg m−3 increase, 
−0.0087; 95% CI, −0.0108, −0.0067; P < 0.001). A very bad smoke 
day (average smoke PM2.5 concentration of 100 μg m−3) is associated 
with a 0.03 decline in sentiment in the non-linear model shown in 
Fig. 2b, which is equivalent to a roughly 0.2-standard-deviation 
decline relative to the overall sample standard deviation. For con-
text, the average difference between tweet sentiment on Wednesdays 
and Saturdays (respectively, the lowest- and highest-sentiment 
days of the week in our data) is about 0.007 in our data; one day 
of very bad smoke (100 μg m−3) is thus about four times worse 
in sentiment terms than replacing an average Saturday with an  
average Wednesday.

Negative effects of smoke on sentiment could occur through a 
variety of channels, including from fear or anxiety about proximate 
fires themselves or about what the fires represent (for example, a 
changing climate), from unhappiness due to disruption in normal 
activities (for example, school closure or inability to recreate), or 
from anticipation or experience of negative health impacts. While 
we cannot distinguish the latter channels in our data, the effects of 
smoke on sentiment are not driven by proximity to active wildfire 
and are robust to temperature and rainfall controls and to alternate 
fixed effects (Supplementary Table 5). These results are consistent 
with a broader literature documenting the negative psychological 
effects of air pollution exposure41.

Exposure to smoke PM2.5 increases search activity related to pro-
tective behaviour. Searches for technologies known to help limit 
exposure, including ‘air filter’, ‘air purifier’, ‘smoke mask’ and ‘purple 
air’, all increase on days in which smoke exposure is higher (Fig. 2c  
and Supplementary Table 6; P < 0.001; linear model effect size, 
0.453; 95% CI, 0.3, 0.606). Some search queries in Spanish (‘puri-
ficador de aire’) respond similarly, although others (‘filtro de aire’) 
do not (Supplementary Table 6).

Finally, smoke PM2.5 exposure on average causes more people 
to not leave their homes, with immediate increases at low levels of 
exposure that flatten off at high levels (Fig. 2d). A day of smoke 
exposure above 50 μg m−3 leads to a roughly three-percentage-point 
increase in the proportion of people fully at home (P < 0.001; linear 
effect size, 0.023; 95% CI, 0.016, 0.031), which corresponds to about 
a 10% increase above the mean. Smoke PM2.5 exposure has a lim-
ited effect on the proportion of people fully away from their homes 
at low exposure levels but an increasing effect at higher exposure 
levels (Extended Data Fig. 3). Both results can be interpreted as 
protective behaviour: during heavy smoke days, many individu-
als shelter in their homes, and some leave the area when exposure 
gets severe. Both results are robust to controls and are not driven by 
proximity to active fires; the effect on the percentage of people at 
home is less robust to the addition of more stringent time controls 
(Supplementary Table 7).
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Exposure and response heterogeneity. Individuals are likely 
to respond to environmental exposures in different ways, either 
because their personal exposure varies or because, for a given expo-
sure, their knowledge of that exposure or their willingness or ability 
to respond to it differs. We explore heterogeneous exposures and 
responses to wildfire smoke as a function of socio-economic status 
(as measured by locality-specific median household income) and 
variation in average previous exposure to wildfire or other PM2.5. 
Previous literature suggests that both could moderate behavioural 
responses to environmental stress through a variety of mechanisms, 
including through differential access to information about exposure 
risk or differential ability, motivation or knowledge of how to take 
protective action8,20,42.

Consistent with earlier work10, but in stark contrast to strong 
socio-economic and ethnic/racial gradients in exposure to other 
key pollutants in the United States43,44, we find that exposure to 

both average and acute smoke PM2.5 is largely uncorrelated with 
income in the United States (Extended Data Fig. 4). We also find 
no differences in salience of smoke exposure between lower- and 
higher-income counties, with similar responses of search query 
activity to a day of heavy smoke across income levels (Fig. 3a; 
P = 0.85 on linear interaction).

Other behavioural measures show strong income gradients. For 
sentiment, wealthier counties respond much more negatively to 
a heavy smoke day than less wealthy counties (Fig. 3b; P = 0.001; 
effect size on linear interaction, −0.001; 95% CI, −0.002, −0.001). 
This finding is not driven by average differences in sentiment 
between more and less wealthy counties, by higher overall variation 
in sentiment in wealthier versus poorer counties (temporal varia-
tion in sentiment is lower in wealthy counties than in less-wealthy 
counties in our sample) or by differences in average exposure to 
smoke PM2.5 or other sources of PM2.5 (Supplementary Table 9). 

0 10 20 30 40 50

US marketing areas, weekly, 2016–2020 US counties, daily, 2017–2020

US marketing areas, weekly, 2016–2020 US counties, daily, 2019–2020

n = 50,600

0

10

20

30

40

50

60

S
en

tim
en

t

0 20 40 60 80 100

n = 1,239,534

–0.05

–0.04

–0.03

–0.02

–0.01

0

0.01

0.02

Smoke PM2.5 (µg m–3) Smoke PM2.5 (µg m–3)

Smoke PM2.5 (µg m–3) Smoke PM2.5 (µg m–3)

S
ea

rc
he

s 
fo

r 
‘fi

lte
r’ 

(in
de

x)
S

ea
rc

he
s 

fo
r 

‘a
ir 

qu
al

ity
’ (

in
de

x)

0 10 20 30 40 50

n = 51,644

0

10

20

30

40

50

P
er

ce
nt

ag
e 

co
m

pl
et

el
y 

at
 h

om
e 

(%
)

0 20 40 60 80 100

n = 678,971

0

1

2

3

4

5

Salience

Mobility

Sentiment

Health protection

a b

c d

Fig. 2 | Behavioural responses to wildfire smoke exposure. a, Searches for ‘air quality’ on Google at the level of US designated marketing area by week, 
2016–2020. The search index is normalized such that zero indicates no searches and 100 indicates the maximum number of weekly searches over the 
period. b, Average sentiment in tweets at the county-day level, 2017–2020. c, Searches for ‘air filter’ on Google at the level of US marketing area by week, 
2016–2020. The search index is normalized as in a. d, Percentage of mobile phones estimated to be completely at home on a given day at the US county 
level, 2019–2020. The black lines are regression point estimates from spline fits conditional on fixed effects, and the shaded areas show bootstrapped  
95% CIs. The number of observations in each regression is shown in the upper left corner of each panel. The histograms at the bottom show the log 
distribution of smoke PM2.5 exposure in each sample.
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These results are consistent with a similar analysis in China, which 
also showed larger negative sentiment responses to air pollution in 
higher-income cities45.

Search activity related to protective behaviour is also substan-
tially higher in wealthier counties (Fig. 3c; P < 0.001; effect size on 
linear interaction, 0.013; 95% CI, 0.006, 0.019) and is not statisti-
cally different from zero in roughly the bottom third of the county 
income distribution. Finally, populations in wealthier counties are 
also substantially more likely to remain fully at home during a day 
of heavy wildfire smoke exposure than lower-income populations 
(Fig. 3d; P < 0.001; effect size on linear interaction, 0.002; 95% CI, 
0.001, 0.002). These results are robust to more or less restrictive time 
controls (Extended Data Fig. 3c). We find no meaningful difference 
across income groups in the proportion of individuals fully away 
from their houses during days of heavy smoke exposure (Extended 
Data Fig. 3d).

Why do wealthier locations respond differently to smoke expo-
sure? The measured differences do not appear to reflect differences 

in exposure information or in overall internet activity, given the 
consistent response of air-quality-related searches across income 
groups. Rather, the responses are consistent with lower incomes 
constraining choice sets and behaviours, including less flexibility in 
working from home, fewer resources with which to consider pur-
chasing protective technology and (regarding the sentiment results) 
having other more pressing matters to worry about.

We find that behavioural measures are also affected by previous 
experience with smoke and with other PM2.5 sources. An additional 
smoke day was less salient in locations with higher previous expo-
sure to smoke PM2.5, and people in locations with higher average 
PM2.5 exposure prior to our study period showed smaller declines in 
sentiment during an additional high smoke day and fewer searches 
related to health-protective behaviour, but were more likely to stay 
at home when smoke PM2.5 was high (Supplementary Tables 8  
and 9). These results are consistent with individuals adapting their 
behaviour and beliefs on the basis of repeated exposure—for exam-
ple, through investments in health-protective technologies.
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Fig. 3 | Smoke salience does not differ, but other responses do differ, among more and less wealthy populations. a, The effect of a heavy smoke exposure 
(50 μg smoke PM2.5 on that day) on searches for ‘air quality’ on Google do not differ by income. b, A heavy smoke day has a stronger negative effect on 
sentiment among wealthy populations. c, Wealthier populations are substantially more likely to search for ‘air filter’ on Google during a heavy smoke day. 
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incomes in each sample. The sample in each panel is same as in the corresponding panel in Fig. 2.
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Smoke PM2.5 infiltration into indoor environments. We find that 
census tracts with PurpleAir monitors tend to be wealthier on aver-
age than tracts without monitors (Extended Data Fig. 5), a finding 
consistent with other analyses46 and with the income-differentiated 
search activity for ‘purple air’ and related health-protective tech-
nologies found above. Nevertheless, the average income of locations 
owning indoor monitors varies by roughly 10× across locations, 
enabling an exploration of the role of income and other demo-
graphic factors in shaping exposures among a population with iden-
tical access to information on their exposures.

Using a pooled model, we estimate that a 1 μg m−3 increase in 
outdoor PM2.5 is associated with a 0.145 (95% CI, 0.135, 0.153; 
P < 0.001) μg m−3 increase in indoor PM2.5 over the next six hours. 
The estimates are robust to alternate regression models and alter-
nate corrections to the monitor data (Extended Data Fig. 6)  
and are comparable in magnitude to recently published esti-
mates40. Estimated infiltration is substantially lower during peri-
ods of high outdoor PM2.5, and responses differ during smoke 
periods (Fig. 4a). When no smoke is present, at median outdoor 
PM2.5 concentrations (6 μg m−3), infiltration declines by 0.0281 
for each 10 μg m−3 increase in outdoor PM2.5 (95% CI, −0.02925, 
−0.02810; P < 0.001). However, when smoke is present, infiltra-
tion declines by only 0.0209 for each 10 μg m−3 increase in outdoor 
PM2.5 (95% CI, −0.02141, −0.02043; P < 0.001). Earlier findings 
of lower infiltration on smoke days33 were probably capturing the 
effect of overall high PM2.5 rather than the effect of smoke-derived  
PM2.5 specifically.

Consistent with our other behavioural measures, declining infil-
tration at high outdoor PM2.5 levels suggests that salient ambient 
exposures induce behavioural responses, which could include clos-
ing windows or doors and/or using mechanical filtration. However, 
in contrast with our other behavioural measures, we find only a 
modest relationship between neighbourhood average income and 
infiltration, with households in much wealthier census blocks expe-
riencing only slightly lower average infiltration than households in 
areas with one quarter the average income regardless of whether 
the PM2.5 was smoke-derived (Fig. 4b; linear interaction effect size, 
−0.012 μg m−3 indoor PM2.5 per additional 1 μg m−3 outdoor PM2.5 
for each US$100,000; 95% CI, −0.030, 0.006; P = 0.180).

To further explore predictors of infiltration, we estimate infil-
tration separately for each of the 1,520 indoor monitors in our 
dataset, match each monitor to a wide range of house- and 
neighbourhood-specific socio-economic, demographic, environ-
mental and housing covariates, and fit flexible machine learn-
ing models relating infiltration to these covariates (Methods). 
Consistent with other work40, we find many-fold differences in 
household-specific infiltration rates (mean = 0.19, s.d. = 0.16;  
Fig. 4c), and we confirm using a Bayesian hierarchical model that 
this variation is largely due to ‘true’ underlying variation between 
households rather than to sampling noise in household-level esti-
mates (Extended Data Fig. 7a). The estimates are only modestly cor-
related with traditional indoor/outdoor ratio estimates (Extended 
Data Fig. 8), perhaps due to the difficulty in accounting for indoor 
sources of emissions or diurnal behavioural patterns in the tradi-
tional indoor/outdoor approach (Supplementary Information).

While racial/ethnic, socio-economic, environmental and hous-
ing variables are associated with infiltration on held-out data, their 
individual explanatory power is very modest, and our rich set of pre-
dictors and flexible models are surprisingly poor predictors of over-
all variation in infiltration, explaining only ~5% of variation across 
indoor monitors in our data (Extended Data Fig. 7b,c). This lack of 
predictive ability of socio-economic factors is also apparent on indi-
vidual smoke days, where even among relatively socio-economically 
advantaged households, very similar outdoor PM2.5 concentrations 
during a given smoke day are associated with widely varying indoor 
PM2.5 concentrations (Extended Data Fig. 9).

To further investigate the differential influence of behaviour ver-
sus housing characteristics (and associated socio-economic factors), 
we re-estimated infiltration for individual households during peri-
ods when windows were likely to be closed and indoor filtration not 
running (Methods). While average infiltration during these periods 
was relatively similar to infiltration during all periods (Extended 
Data Fig. 7d), infiltration varies much more strongly with both 
income (Extended Data Fig. 7e) and housing age (Extended Data 
Fig. 7f) under these conditions. Taken together, and consistent with 
previous smaller-scale work39, our results indicate that the poor 
explanatory power of socio-economic and housing characteristics is 
driven not by poor measurement of these characteristics but by the 
dominant effect of idiosyncratic household-specific behaviours that 
are not correlated with these characteristics.

Finally, using indoor monitors across the Bay Area and data prior 
to August 2020, we divide monitors into low (bottom quartile) and 
high (top quartile) infiltration groups (Fig. 4d) and study outdoor and 
indoor PM2.5 levels across these groups during the extreme wildfire 
smoke event that the area experienced in August–September 2020. 
High- and low-infiltration households experienced nearly identical 
daily outdoor concentrations during the many-week event (Fig. 4e), 
but these ambient levels led to starkly different indoor concentrations. 
On the worst smoke days, daily average indoor concentrations across 
all high-infiltration homes exceeded 65 μg m−3, and in some houses 
they exceeded 100 μg m−3, well above the World Health Organization 
24-hour PM2.5 exposure guideline of 15 μg m−3. Low-infiltration 
households were on average able to maintain indoor PM2.5 concen-
trations near 5 μg m−3. Across the duration of the smoke event, daily 
mean indoor concentrations were on average 3.5× higher in the 
highest quartile versus the lowest quartile of infiltration households. 
Differences were even larger when looking across all Bay Area moni-
tors: households with average outdoor PM2.5 levels within 5 μg m−3 
of each other experienced >20× differences in average indoor PM2.5 
concentrations during the smoke event (Extended Data Fig. 10).

Discussion
A growing literature documents the large and often disparate impacts 
of wildfire smoke on a range of health outcomes14–18,21,22. Our results 
show how non-traditional sensor data can provide policy-relevant 
insight into why the magnitude and incidence of these impacts 
might vary. Multiple lines of evidence indicate that awareness of 
smoke concentrations does not appear to be a primary constraint 
on individual behaviour in the face of wildfire smoke exposure: 
even small increases in ambient exposure cause individuals to seek 
air quality information, become unhappier and stay in their homes. 
But while awareness appears to be broadly shared, it does not lead 
to adequate health protection. Even among populations that own 
indoor monitors and thus have access to accurate, real-time mea-
sures of their indoor concentrations, information is not enough to 
limit dangerous indoor exposures to these pollutants. This suggests 
that policies targeting information provision about smoke are insuf-
ficient, and perhaps not central, to enabling protective behaviour.

Socio-economic status is not correlated with outdoor smoke lev-
els but does appear to mediate behavioural responses to such pollu-
tion. Wealthier households in our sample can more easily stay home, 
are more likely to seek information on protective technology and 
are more likely to own indoor pollution monitors. Such differential 
behaviour is consistent with a broader literature that shows how 
socio-economic status constrains households’ abilities to invest in 
environmental quality and health protection8,47. Yet, at least in our 
sample of monitor-owning households, income is only weakly cor-
related with the infiltration of ambient smoke into indoor environ-
ments, and we observe many households in wealthy neighbourhoods 
experiencing exceedingly high levels of indoor smoke exposure.

Our results suggest that this is probably because present infiltra-
tion rates are dominated by actions such as opening windows and 
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Fig. 4 | infiltration rates decline strongly with outdoor PM2.5 concentration during both fire and non-fire periods, but not with income, and they differ 
greatly across households, resulting in extreme differences in indoor exposure during wildfires. a, Infiltration rates, measured as the integrated hourly 
change in indoor PM2.5 per unit increase in outdoor PM2.5, are lower during periods of high outdoor PM2.5 but decline more quickly when PM2.5 comes from 
other sources. The lines are regression point estimates, and the shaded areas are bootstrapped 95% CIs. b, Infiltration rates are only weakly correlated 
with census-block median income; the lines, shading and units are as in a. c, The distribution of infiltration rates estimated separately for each household 
in the sample is wide. d, Residents from the highest and lowest infiltration quartiles in the Bay Area64 are mapped and coloured according to group, 
showing that the groups are geographically intermixed. e, Daily outdoor PM2.5 concentrations during the unprecedented August–September 2020 wildfire 
smoke event were highly similar between high- and low-infiltration households. The transparent lines show concentrations at each residence, and the thick 
lines show the averages within each group. The left panel shows daily mean concentrations, and the right panel shows averages across all days during the 
event. f, Same as e but for indoor PM2.5 concentrations, showing very large (>100 μg) daily differences during peak outdoor concentrations (left) and 3.5× 
differences in average indoor exposure between high- and low-infiltration groups (right).
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doors, not housing materials or quality that might be reflected in 
prices. Infiltration patterns thus point to the importance of behav-
iour that remains unobserved, a fact that is both encouraging and 
troubling. If simple but difficult-to-observe behaviours such as 
closing windows and doors explain the vast majority of variation 
in smoke infiltration, then reducing infiltration at the population 
scale could be much easier in theory than if infiltration was largely 
determined by income or housing quality, as changing these latter 
factors requires addressing deeper societal problems of inequality 
and structural racism. Nevertheless, a key limitation of our infiltra-
tion analysis is our reliance on a convenience sample of households 
who own PurpleAir monitors, who are overwhelmingly Californian 
and higher-income. Better measurement of indoor air quality and 
infiltration in lower-income households, and in households around 
the country, remains a critical research priority.

Current policy approaches to addressing smoke exposure focus 
on behavioural recommendations to stay at home and close windows 
and doors24, but our results suggest that these policies alone are dif-
ficult to comply with and may still be inadequate: many households’ 
indoor environments remain highly exposed, and our mobility 
results suggest that adherence might be difficult for lower-income 
households. If such behaviours are indeed hard to adopt, then the 
policy approach of promoting private provision of protection could 
be biased against disadvantaged groups. This policy approach also 
stands in stark contrast to the approach of public provision of pro-
tection used for other sources of PM2.5, which has sought to reduce 
emissions of pollutants at their source and which has successfully 
reduced overall ambient exposure inequalities48. Further under-
standing the variation and causes of the behaviours that can protect 
indoor environments will be key to designing policy that can both 
lower indoor concentrations and not disadvantage certain groups.

Methods
All of the data used in our study are either from public sources where individuals 
are posting public statements and/or consenting to have their location tracked 
(Twitter and PurpleAir), or from spatially and temporally aggregated data with no 
available personally identifying information (search trends data and mobility data).

Estimating ground PM2.5 concentrations from smoke. We develop a generic, 
tractable method for estimating ground PM2.5 attributable to smoke at the daily 
level. The method requires a credible estimate of whether there is smoke in 
the air on a given day, and a daily time series of PM2.5 from which location- 
and period-specific anomalies can be constructed. In principle, any available 
(accurate) daily PM2.5 estimates could be used, including recent promising 
machine-learning-based efforts at generating high-resolution gridded time series 
of PM2.5 concentrations49,50. However, existing gridded data are not available 
for recent years, so we instead use station-based daily PM2.5 measures from the 
network of thousands of EPA stations across the continental United States (Fig. 1a).

To construct our daily measures of smoke PM2.5, we define PMidmy as the PM2.5 
concentration recorded by the EPA monitor at location i on day d, month m and 
year y. From this time series, we construct location- and month-specific anomalies 
PManomidmy = PMidmy − PMimy, where PMimy is the monthly median PM2.5 on 
non-smoke days at that location, and where median is defined over the three years 
surrounding the year of interest. We use a three-year moving median to account 
for the long-term declining trend in PM2.5 across most of the United States driven 
by non-wildfire causes10. So, for example, a PM2.5 anomaly for the Redwood City, 
California, EPA station on 10 January 2019 is calculated as the value on 10 January 
2019 minus the median PM2.5 value on all January days in 2018, 2019 and 2020 in 
Redwood City when smoke was not overhead. Our measure of whether smoke was 
overhead, plumeidmy, is derived from the NOAA Hazard Mapping System (HMS) 
satellite estimates of smoke plume boundaries. We define plumeidmy = 1 if there 
was a smoke plume of any thickness over location i during any time on day d, and 
zero otherwise. We estimate that having a smoke plume of any thickness overhead 
increases daily PM2.5 concentrations at EPA reference monitors by an average of 
4.0 μg m−3, and the effect becomes stronger as plume density increases from light 
to medium to heavy (Supplementary Table 10). Finally, from these data we can 
construct SmokePMidmy = PManomidmy × plumeidmy. SmokePMidmy will thus equal 
zero when there is no plume overhead and will equal the anomaly value when there 
is smoke overhead. Our approach thus provides a continuous measure of smoke 
exposure intensity. We note that our approach is unaffected by an overhead smoke 
plume that does not mix down to the surface; in that case, ground PM2.5 anomalies 
would be zero, and so no smoke PM2.5 would be assigned.

Our approach is similar to recent work51 using interpolated station data and 
plumes to estimate smoke PM2.5. However, given the high spatial variation in 
smoke exposure and the often large distance between EPA stations, we chose not 
to interpolate EPA stations. To confirm that just one or a handful of monitoring 
stations in a given county or metro area can adequately represent temporal 
variation in smoke exposure in that area, we computed the pairwise correlations 
between time series of smoke observations in each pair of stations in our data, 
restricting to stations with at least 1,000 days of data (yielding >85,000 pairwise 
combinations). We then studied correlation in smoke PM2.5 between stations 
as a function of distance between stations (Extended Data Fig. 1b). Counties 
in our sample (our main unit of analysis) have an average width of 55 km, and 
metro areas (used in the Google Trends data, described below) have an average 
width of 228 km; these widths represent the upper bound on an individual’s 
distance from a monitor in our data, and average distances are probably much 
smaller given that monitors are purposely placed in populated locations. Median 
correlations in smoke PM2.5 variation are on average r = 0.84 and r = 0.63 at these 
distances, suggesting that data from an individual point in a county/metro area 
is reasonably highly representative of variation elsewhere in the county/metro 
area. We emphasize that our statistical models exploit this location-specific 
temporal variation in smoke PM2.5, which is unlikely to be affected by spatial 
bias or unrepresentativeness in average pollution values at some stations52,53. Any 
remaining non-systematic measurement error due to distance from monitors will 
attenuate our estimated effects of smoke towards zero54.

Measuring salience and health-protective behaviour. We measure salience and 
health-protective behaviour using public search query data from Google Trends. 
The data are accessed using the R package gtrendsR version 1.4.8.900055 and are 
provided as location-, term- and period-normalized indices ranging from 0 to 
100, where 0 is the lowest search volume for that term in that location during the 
chosen period, and 100 is the highest search volume. The data are available at the 
DMA level (referred to as ‘metro’ areas by Google Trends), which are geographic 
regions encompassing television media markets as defined by Nielsen.

We study searches in both English and Spanish, which together are the primary 
languages spoken by 92% of US households56. We use weekly data on DMAs, the 
native spatial resolution of the public Trends data, between January 2016 and 
December 2020, and analyse data on terms related to smoke exposure (including 
‘air quality’, ‘smoke’ and ‘wildfire smoke’).

Measuring sentiment. We measure online sentiment for a county-day using 
the text of Twitter posts (‘tweets’) created in that county on that day. Specifically, 
we collect nearly all of the geolocated tweets for the continental United States 
between December 2016 and February 2021 through the Twitter Streaming API, in 
accordance with the terms and conditions laid out in Twitter’s Developer Agreement 
(https://developer.twitter.com/en/developer-terms/agreement). Per the agreement, 
the authors cannot make individual tweets available publicly. To compute sentiment 
for each tweet, we apply the VADER sentiment analysis model28, a natural language 
processing algorithm tuned specifically for estimating sentiment from online 
language. We take the average of the ‘compound’ scores (ranging between −1 and 1) 
computed by VADER for all tweets in a county-day as our measurement of sentiment. 
Our approach builds on the computation of expressed sentiment described in  
ref. 26. Readers may refer to that article for additional details on the general approach 
to collecting and processing tweets for use in empirical analysis. On average, the 
mean sentiment for a county-day is 0.17, computed from 455.4 tweets.

Measuring mobility. We assembled a daily dataset of mobility measures at the 
county level collected between January 2019 and December 2020, the period 
over which mobility data were made available to researchers by SafeGraph. These 
data measure the aggregate activity of anonymized device signals, or ‘pings’, at 
the census block group level. Signals are collected from smartphones, not all 
cell phones. We focus on two measures constructed from these anonymized 
signals: the percentage of individuals completely at home on that day, and the 
percentage of individuals completely away from home on that day. We construct 
the ‘completely away from home’ variable by counting the percentage of devices on 
a given day that were not observed in their respective home location. SafeGraph 
assigns a home location to each device on the basis of its mobility pattern observed 
over the previous six weeks. We aggregate these data to the county-day level by 
taking means weighted by the number of devices in each census block. The data 
processing details are discussed further in ref. 57.

Measuring distance to fire. To distinguish the effects of exposure to wildfire 
smoke from potentially correlated effects of being near an active wildfire, we 
develop daily measures of proximity to active wildfires and test whether the effects 
of smoke we uncover on outcomes might instead be the direct effects of proximity 
to fire. We compute ‘distance to fire’ as the population-weighted average distance 
from 10 km grid cell centroids within a county to their nearest NOAA HMS fire 
point(s) and as the distance from a DMA centroid to the nearest fire cluster. 
Building on earlier work10, ‘fire clusters’ are constructed by buffering each HMS fire 
point by 3 km square and taking the union of existing overlapping squares over a 
given day and the previous three days, and distance to fire cluster is set to 0 if the 
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active fire cluster is inside the DMA on that day. This does not mean that 10 km2 
are burning, but within that 10 km2 there are multiple fire points over a three-day 
period, representing an active and potentially growing fire. We emphasize that our 
goal in this analysis is not to test the independent effect of proximity to wildfire on 
these outcomes, but to understand whether we’re actually isolating smoke impacts 
or conflating them with fire proximity.

Estimating ambient smoke impact. We combine the above behavioural measures 
with our smoke PM2.5 estimates and analyse their correspondence using panel 
fixed effects estimators, with the goal of isolating the impact of variation in 
smoke exposure from other time-invariant and time-varying factors that could 
be correlated with both smoke exposure and outcomes. Specifically, we estimate 
econometric models of the form:

yisdmy = f(SmokePMisdmy) + Zisdmy + αim + ηd + εisdmy (1)

where yisdmt is outcome of interest in unit i, state s, day d, month m and year 
y; SmokePMismy is our smoke PM2.5 measure on the same day and location; 
and Zismy are additional time-varying controls. Our preferred model includes 
a location-by-month fixed effect αim to account for local seasonality in either 
outcomes or exposures (for example, one intercept for each of the 12 months in 
Santa Clara County, California) and a day-of-sample fixed effect ηd (for example, 
a dummy for 1 January, another for 2 January 2016 and so on) to account for 
common trends or shocks to outcomes or exposures on a given day. Our date fixed 
effect implicitly also accounts for any average differences in outcomes between 
weekends and weekdays. We estimate f() using either linear models or more flexible 
cubic splines to capture potential nonlinearities. In all analyses using search query 
data, Twitter data or mobility data, smoke PM2.5 is measured using EPA station 
data, as described above.

In these models, the effect of smoke exposure on outcome y is estimated by 
relating, for example, outcomes in Santa Clara County on 30 August 2020 versus  
1 September 2020 to differences in smoke exposure on those days, after accounting 
for any common difference across counties in exposure or outcomes between the 
two days, and any average differences in smoke exposure or outcomes in August 
versus September in Santa Clara County. A confounding variable would have to 
be a local time-trending unobservable correlated with both smoke exposure and 
the outcome. Possible candidates include weather variables and the presence of 
an active wildfire nearby, and we additionally control for these variables (Zisdmy in 
equation (1)) in robustness tests, or split the sample between locations nearby and 
further from an active wildfire.

Another potential threat to identification is the COVID-19 pandemic, which 
near the end of our sample period had demonstrated effects on mobility58 and 
sentiment59, and probably enhanced awareness about the importance of air 
filtration60; 2020 was also a year of severe smoke exposure throughout much of 
the US West. Because we exploit daily variation in smoke exposure over time at 
particular locations, and because such variation depends largely on stochastic 
factors such as exactly where fires ignite and which way the wind is blowing, we 
believe that daily variation in COVID-19 outcomes or behaviours is unlikely to be 
spuriously correlated with wildfire smoke exposures. However, to further address 
this confounding risk, we test robustness to even more stringent time controls, 
including county-by-month-of-sample fixed effects and state-by-day-of-sample 
fixed effects; these further account for any state-specific differences or trends in 
COVID-19 severity and/or policy intervention that happened to coincide with 
wildfire risk. We note that any changes in our observed behavioural outcomes due 
to wildfire-specific effects on health outcomes, including wildfire’s potential effects 
on COVID-19 itself17, are not confounding and would constitute part of the overall 
‘effect’ that we wish to understand.

To study whether the effects of smoke on outcomes vary across locations, we 
interact smoke exposure with time-invariant covariates of interest:

yisdmy = β1SmokePMisdmy + β2SmokePMisdmy × Xi + Zisdmy + αim + ηd + εisdmy
(2)

where Xi in our analysis includes median household income, average previous 
exposure to PM2.5 and average smoke PM2.5 exposure, included either individually 
or jointly. Because our analysis is at the county level, and because some covariates 
(particularly income) could vary substantially within counties, the heterogeneous 
treatment effects estimated on county data with equation (2) could understate the 
true underlying heterogeneity in responses to smoke exposure.

Our approach does not allow us to estimate whether individuals respond to 
smoke PM2.5 differently than they do other sources of PM2.5. Unlike for smoke PM2.5, 
we do not have a research design that can isolate plausibly exogenous variation 
in other sources of PM2.5. For instance, if traffic is an important daily driver of 
non-smoke PM2.5 in a given location, and traffic volume is correlated with a booming 
economy, an analysis of the impact of non-smoke PM2.5 on any of our outcomes 
would struggle to separate the impact of the PM2.5 itself from the impact of the 
activity that generated the PM2.5. Even if people were unhappy about high PM2.5 levels 
and would otherwise stay home, an analysis could easily find that both sentiment and 
mobility were higher on high-PM2.5 days, as people enjoyed their trips to the office. 
This confounding is unlikely to be a problem for smoke PM2.5, however, as day-to-day 
variation in smoke exposure (conditional on our controls) is plausibly random.

Measuring indoor and outdoor household PM2.5 using PurpleAir. To estimate 
household infiltration of outdoor PM2.5 into indoor environments, we utilize data 
collected by low-cost PurpleAir monitors. Raw ten-minute observations were 
downloaded from the PurpleAir servers (available at https://thingspeak.com/) via 
JSON in accordance with PurpleAir terms and conditions. Data were downloaded 
from the earliest available date through the end of 2020 or the last available date, 
whichever is earlier for all available indoor and outdoor PurpleAir monitors in 
the contiguous United States. Data quality checks were implemented following 
the procedures utilized in recent studies38,40 to produce hourly indoor and outdoor 
PM2.5 concentrations. We then followed existing literature and used multiple 
approaches to estimate PM2.5 concentrations from the cleaned PurpleAir data 
(Supplementary Information).

Hourly ambient exposures were estimated at each indoor monitor site by  
first identifying all outdoor monitors within 5 km and then taking the inverse 
distance weighted average of hourly PM2.5 concentration across the (up to) ten 
nearest monitors. Monitors with less than 720 non-missing hourly indoor and 
outdoor PM2.5 measurements (that is, 30 days of hourly data) were excluded  
from the analysis.

Finally, indoor PurpleAir monitors are deployed in many different types of 
buildings. We used a combination of information from monitor labels and manual 
checking of geolocations to determine which buildings with indoor PurpleAir 
monitors were single-family residences. All other types of buildings were removed 
from the sample. In total, there were 1,520 indoor monitors reporting in our 
sample of single-family residences.

Estimating infiltration rates. To estimate the average indoor infiltration rate, 
which we define as the increase in indoor PM2.5 concentration per unit increase 
in local outdoor PM2.5 concentration (that is, ∂IndoorPM2.5/∂OutdoorPM2.5), we 
estimate a regression at the monitor-hour level. Namely, for each residence i in 
hour h on day-of-week d and month-of-sample m, we estimate how indoor PM2.5 
varies with contemporaneous and previous hour measurements of outdoor PM2.5:

PMin
ihdm =

6∑

k=0

βkPM
out
i;h−k;dm + γi + δh + ηd + θm + εihdm (3)

To isolate the contribution of outdoor PM2.5 to indoor PM2.5 from other 
time-varying PM2.5 sources (most notably, indoor-sourced PM2.5), we use fixed 
effects to flexibly control for time invariant differences across households (γi), 
monthly trends in PM2.5 over the sample (θm) and household-specific average 
variation in PM2.5 within the day (δh). Day-of-week fixed effects (ηd) control for 
differences in patterns across weekdays and between weekdays and weekends.

We include six lags here (outdoor PM2.5 at each of the previous six hours) 
to account for lingering effects of outdoor concentrations in previous hours 
on contemporaneous indoor concentrations, although the results are robust to 
the inclusion of additional lags. From this regression, we derive an estimate for 
outdoor–indoor infiltration by calculating the cumulative effect of a 1 μg m−3 
increase in outdoor concentrations on indoor concentrations:

infiltration =

6∑

k=0

βk (4)

To assess the importance of modelling structure, we re-estimated equation (3) 
with four different lag structures: a distributed lag model with lags for outdoor 
PM2.5 only (shown above), a lagged dependent variable model with a lag for indoor 
PM2.5 only, a model with both indoor and outdoor PM2.5 lags, and finally a model 
with no lag terms (Supplementary Table 11). Infiltration rate estimates derived 
from each of the models are highly similar (Extended Data Fig. 6), and models 
with more than six lags produce indistinguishable estimates of infiltration rates.

To examine heterogeneity in infiltration rates across hourly outdoor pollution 
levels and by smoke presence, we first estimate a nonlinear version of equation (3). 
Namely, we model indoor PM2.5 as a fourth-degree polynomial of outdoor PM2.5 
(and its lags) and interact it with a dummy variable indicating whether smoke 
was present. The smoke dummy Sit is defined as 1 when a NOAA HMS plume 
reported a smoke plume of any density over the PurpleAir monitor on that day 
and 0 otherwise, where t indexes day of sample and all hours within a given day are 
assigned the same value for the smoke dummy:

PMin
ihdmt =

[ 6∑
k=0

βkPMout
i;h−k;dmt +

6∑
k=0

αk(PMout
i;h−k;dmt)

2
+

6∑
k=0

νk(PMout
i;h−k;dmt)

3
+

6∑
k=0

λk(PMout
i;h−k;dmt)

4
]
+

[ 6∑
k=0

βk;sPMout
i;h−k;dmt +

6∑
k=0

αk;s
(
PMout

i;h−k;dmt
)2
+

6∑
k=0

νk;s
(
PMout

i;h−k;dmt
)3

+

6∑
k=0

λk;s(PMout
i;h−k;dmt)

4
]
× Sit+

γi + δh + ηd + θm + εihdmt

(5)

NAturE HuMAN BEHAviour | www.nature.com/nathumbehav

https://thingspeak.com/
http://www.nature.com/nathumbehav


Articles NaTURE HUMaN BEHaviOUR

To measure the infiltration rate, we then calculate the derivative of indoor 
PM2.5 with respect to outdoor PM2.5 estimated in equation (5) and use the estimated 
regression coefficients (β, α, ν, and λ) to evaluate across the 1st–99th percentile of 
observed hourly outdoor PM2.5 concentrations as well as the indicator for whether 
or not smoke was present. The responses are plotted in Fig. 4a.

We also estimate infiltration rates as a function of median census tract 
income and smoke by estimating equation (3) with additional income and 
income-by-smoke interaction terms:

PMin
ihdmt =

[ 6∑
k=0

βkPMout
i;h−k;dmt

]
+

[ 6∑
k=0

βk;iPMout
i;h−k;dmt

]
× incomei+

[ 6∑
k=0

βk;i;sPMout
i;h−k;dmt

]
× incomei × Sit + γi + δh + ηd + θm + εihdmt

(6)

The median income data come from the American Community Survey. Each 
indoor monitor was matched to a census tract, and median income was pulled for 
the most recent available year and updated to 2020 US dollars. We then similarly 
calculated the derivative of indoor PM2.5 with respect to outdoor PM2.5 and 
evaluated across the 1st–99th percentile of observed PM2.5 concentrations. The 
responses are plotted separately for smoke and non-smoke periods in Fig. 4b.

Finally, for each indoor monitor, we estimated a separate distributed lag model 
analogous to the pooled model in equation (3):

PMin
ihdm =

6∑

k=0

βikPM
out
i;h−k;dm + δh + ηm + θd + εihdm (7)

where PM2.5 at indoor monitor i in hour h on day-of-week d and month-of-sample 
m is modelled as a function of outdoor PM2.5 in that location in the contempo-
raneous period and for each of the previous six hours. Our estimate of the overall 
infiltration rate for each monitor, which we denote βi, is then the sum of coefficients 
over time from the regression for that monitor (that is, βi =

∑6
k=0 βik).

Understanding variation in household infiltration rates. Monitor-specific 
estimates suggest large variation in infiltration across households (Fig. 4c), 
consistent with earlier work40. However, since monitor-specific infiltration values 
are themselves estimates from data, the observed variation across monitors could 
reflect ‘true’ underlying heterogeneity in infiltration or could simply reflect 
sampling variation (or some combination of the two).

To distinguish sampling variation from underlying heterogeneity, we estimate 
a Bayesian hierarchical model61,62 that models monitor-specific infiltration 
estimates as being distributed normally about true monitor-specific infiltration 
values with estimated monitor-specific sampling variance ˆβi ∼ N(βi , ˆs.e.2i ) and 
true monitor-specific infiltration values as drawn from an underlying normal 
distribution with unknown mean and variance βi ~ N(β, σ2).

We then train flexible machine-learning-based models to predict 
monitor-specific infiltration rates from matched covariates (Supplementary 
Information). We divide our sample into a 75% training dataset and a 25% held-out 
test dataset, splitting train and test within 13 disjoint geographic regions covering 
the contiguous United States to ensure a geographically balanced split. We train 
random forest and gradient boosted trees models with manually tuned forest and 
boosting hyperparameters, respectively, and tree parameters tuned using random 
search with threefold cross-validation repeated five times. We conduct tuning 
and training for each method of matching monitors and CoreLogic houses for 
robustness.

We report performance statistics (R2) on held-out test data and compute the 
marginal effect of each predictor by evaluating the predicted effect in the test data 
of moving from the 5th percentile to the 95th percentile of the predictor, with 
all other variables fixed at their mean values. We repeat this evaluation for both 
random forest and gradient boosted trees models, and for all four ways of spatially 
matching to housing characteristics.

Understanding the representativeness of the study samples. See the 
Supplementary Information for a discussion of sample representativeness across 
our multiple datasets.

Reporting summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
The data to replicate all the results in the main text and supplementary 
material are available at https://github.com/echolab-stanford/
wildfire-exposure-behavior-public.

Code availability
The code to replicate all the results in the main text and supplementary 
material is available at https://github.com/echolab-stanford/
wildfire-exposure-behavior-public.
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Extended Data Fig. 1 | Counties included in analyses that use EPA pollution monitors, and correlation in smoke PM2.5 between monitor pairs as a 
function of distance between monitors. a. Counties in red are those with EPA pollution monitors from which we construct smoke PM2.5 measures for the 
behavioral analyses. b Colors depict a heatmap of the 85,102 pairwise correlations, with lighter colors depicting areas with more data and shown in legend 
at right; solid black line is the median correlation at each distance. Sample is restricted to stations with at least 1000 days of data. Mean width of counties 
in our data is 55 km, and mean width of metro areas is 228 km. Source for a: US Census Bureau.
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Extended Data Fig. 2 | time spent indoors at home in America. Data are from repeated rounds of the American Time Use Survey. Top panels show data 
by average income, age, season, and race/ethnicity. Bottom map shows averages by state across survey rounds. Source for e: US Census Bureau.
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Extended Data Fig. 3 | Effect of smoke PM2.5 on different mobility measures, and heterogeneity by income. a Percent of mobile phones estimated to 
be completely at home on a given day at the US county level, 2019–2020. Black lines are regression point estimates from spline fits conditional on fixed 
effects, with shaded areas showing bootstrapped 95% confidence intervals. Number of observations in each regression is shown in upper left corner 
of each panel. Histograms at the bottom show the log distribution of smoke PM2.5 exposure in each sample. b Same but for % fully away from home on 
that day. c-d Effect of smoke PM2.5 on mobility as a function of income. Lines show the marginal effect of a heavy smoke exposure (50ug smoke PM2.5 on 
that day) on percent of individuals completely at home on that day (c) or completely away from home (d), as a function of median household income in 
that county. Colors represent models run with either date fixed effects (blue) or state-by-date fixed effects (orange). Dark lines show regression point 
estimates, shaded area the bootstrapped 95% CI.
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Extended Data Fig. 4 | Exposure to average and acute smoke PM2.5 at the county level does not differ systematically by income. Daily smoke PM2.5 
exposures by income decile across US counties, 2006-2020. Dots represent daily observations where smoke PM2.5 was non-zero. Plot is truncated at 
300ug for clarity; not plotted are 71 days (0.001% of the sample) in which smoke PM2.5 exceeded 300. Statistics at right show the percent of observations 
across the study period with daily smoke PM2.5 observations above the listed value.
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Extended Data Fig. 5 | Higher income uS census tracts are more likely to have PurpleAir monitors. Grey bars show the distribution of tract-level median 
household income across all US census tracts in the contiguous US, red bars the income in tracts with at least one outdoor PurpleAir sensor, and blue bars 
the income in tracts with at least one indoor PurpleAir sensor. Vertical lines give the median of each distribution.

NAturE HuMAN BEHAviour | www.nature.com/nathumbehav

http://www.nature.com/nathumbehav


ArticlesNaTURE HUMaN BEHaviOUR ArticlesNaTURE HUMaN BEHaviOUR

Extended Data Fig. 6 | infiltration estimates are highly correlated across alternate statistical models and methods of deriving PM2.5 concentrations from 
Purple Air data. Correlation between infiltration estimates from statistical models with different lag structures and different PM2.5 concentration estimates 
(see Supplementary Table 11 for details). 1a is our preferred specification presented in the main results.
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Extended Data Fig. 7 | understanding variation in household-specific infiltration estimates. a Posterior estimates of monitor-specific infiltration rates 
from a Bayesian hierarchical model are very similar to “raw” estimates from our monitor-specific time-series regressions, indicating that true heterogeneity 
rather than sampling noise is what is driving observed differences in estimated infiltration. b Ability of random forest (RF) or gradient boosted trees (GBT) 
model to explain variation (r2) in infiltration across monitors remains low; models use predictors in (c). c For each predictor, we calculate the effect on 
infiltration of moving from the 5th to the 95th percentile of that predictor in the test dataset, holding the other predictors constant at their average value 
in the test dataset; estimates are shown for RF and GBT models and for four alternate spatial buffers used to construct housing predictors. Housing Index 
is constructed by averaging standardized values of home value, number of stories, number of baths, number of bedrooms, height, and area. A/C measures 
the inverse distance weighted proportion of matched CoreLogic houses that have air conditioning. Median Income is the median household income in the 
Census tract population. Race variables (i.e. all demographic covariates except Hispanic) are measured among the non-Hispanic/Latino population.  
AI/AN stands for American Indian and Alaska Native. NHPI stands for Native Hawaiian and other Pacific Islander. HDD and CDD stand for heating degree 
days and cooling degree days, respectively. d Range of household-level infiltration estimates for the full sample and for sub-samples when behavior  
(ie opening/closing of doors, use of air purifier) is expected to matter less: when it’s raining, nighttime, and periods when it is cold ( < 10∘C) and low PM2.5 
( < 30μg/m3). e-f during periods when behavioral factors are more likely minimized, infiltration varies more strongly with income and housing age.
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Extended Data Fig. 8 | Monitor-specific infiltration estimates using indoor/outdoor ratios versus regression-based approaches. I/O estimates are only 
modestly correlated with our preferred regression-based estimates that measure the marginal effect on indoor PM2.5 concentrations of a unit increase in 
outdoor concentrations. For each monitor I/O ratio was calculated across all observations with hourly indoor PM2.5 less or equal to outdoor PM2.5. δI/δO 
was estimated as described in Methods.
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Extended Data Fig. 9 | outdoor and indoor PM2.5 concentrations on a smoke day in CA. Very similar outdoor PM2.5 concentrations during a smoke event 
on Aug 20th, 2021 over a high-income area of the peninsular Bay Area were associated with widely varying contemporaneous indoor PM2.5 concentrations. 
© OpenStreetMap contributors.
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Extended Data Fig. 10 | variation in indoor PM2.5 across monitors with similar outdoor PM2.5 during the Aug/Sep 2020 smoke event in the Bay Area. 
Each dot is average outdoor PM2.5 and average indoor PM2.5 for an individual monitor in the Bay Area over the Aug/Sep 2020 smoke event, with monitors 
grouped into 5 μg/m3bins based on outdoor exposure. Numbers at top show the number of monitors in each bin (black), and the ratio of maximum to 
minimum indoor PM2.5 across monitors within each outdoor PM2.5 bin (red). Monitors with average outdoor PM2.5 exposures within 5 μg/m3of each other 
experienced > 20x differences in indoor PM2.5 exposures.
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A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code
Policy information about availability of computer code

Data collection All data collection code was written in R v4.0 by the research team. 

Data analysis All analysis code was written in R v4.0 by the research team. All code are available at https://github.com/echolab-stanford/wildfire-exposure-
behavior-public

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and 
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.

Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A description of any restrictions on data availability 
- For clinical datasets or third party data, please ensure that the statement adheres to our policy 

 

Data to replicate all results in the main text and supplementary material are available at https://github.com/echolab-stanford/wildfire-exposure-behavior-public
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For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Behavioural & social sciences study design
All studies must disclose on these points even when the disclosure is negative.

Study description Quantitative observational study

Research sample Research sample changes based on the analysis, but is clearly described in the methods for each dataset.  Datasets include a random 
sample of all individuals using Google search, the universe of individuals using Twitter, all individuals with smartphones, or individuals 
with indoor air pollution monitors. 

Sampling strategy Samples were convenience samples of all individuals using google search, twitter, mobile phones, or indoor air pollution monitors, as 
described in paper methods. 

Data collection Data were collected via computer. 

Timing Sample periods roughly range from 2016-2021, with the mobile phone data covering only the 2019-2021 period. 

Data exclusions No data were excluded. 

Non-participation NA

Randomization NA

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems
n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology and archaeology

Animals and other organisms

Human research participants

Clinical data

Dual use research of concern

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging
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